On the Reciprocal Difference Equation with Maximum and Periodic Coefficients

نویسنده

  • H. D. Voulov
چکیده

We study the nonlinear difference equation xn = max { An xn−1 , Bn xn−2k−1 } , n ∈ N0, where k is any fixed positive integer and the coefficients An,Bn are positive and periodic with the same period 2. The special case when k = 1 has been investigated earlier by Mishev, Patula and Voulov. Here we extend their results to the general case. AMS subject classification: 39A10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Analysis of The Dual-phase-lag Heat Transfer Equation in a Finite Slab with Periodic Surface Heat Flux (RESEARCH NOTE)

This work uses the dual-phase-lag (DPL) model of heat conduction to demonstrate the effect of temperature gradient relaxation time on the result of non-Fourier hyperbolic conduction in a finite slab subjected to a periodic thermal disturbance. DPL model combines the wave features of hyperbolic conduction with a diffusion-like feature of the evidence not captured by the hyperbolic case. For the ...

متن کامل

Almost Periodic Motions in Semi-group Dynamical Systems and Bohr/levitan Almost Periodic Solutions of Linear Difference Equations without Favard’s Separation Condition

The discrete analog of the well-known Favard Theorem states that the linear difference equation (1) x(t + 1) = A(t)x(t) + f(t) (t ∈ Z) with Bohr almost periodic coefficients admits at least one Bohr almost periodic solution if it has a bounded solution. The main assumption in this theorem is the separation among bounded solutions of the homogeneous equations (2) x(t + 1) = B(t)x(t), where B ∈ H...

متن کامل

On Homoclinic Solutions of a Semilinear p-Laplacian Difference Equation with Periodic Coefficients

We study the existence of homoclinic solutions for semilinear p−Laplacian difference equations with periodic coefficients. The proof of the main result is based on Brezis–Nirenberg’s Mountain Pass Theorem. Several examples and remarks are given.

متن کامل

Forced oscillations of a damped‎ ‎Korteweg-de Vries equation on a periodic domain

‎In this paper‎, ‎we investigate a damped Korteweg-de‎ ‎Vries equation with forcing on a periodic domain‎ ‎$mathbb{T}=mathbb{R}/(2pimathbb{Z})$‎. ‎We can obtain that if the‎ ‎forcing is periodic with small amplitude‎, ‎then the solution becomes‎ ‎eventually time-periodic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008